Algorithms

Ch.15 Dynamic Programming

Dynamic Programming

- Not a specific algorithm, but a technique (like divide-and-conquer).
- Developed back in the day when "programming" meant "tabular method" (like linear programming). Doesn't really refer to computer programming.
- Used for optimization problems:
 - Find *a* solution with *the* optimal value.
 - Minimization or maximization.

Four-step method

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Rod cutting

How to cut steel rods into pieces in order to maximize the revenue you can get? Each cut is free. Rod lengths are always an integral n
 Input: A length n and table of prices pi , for i = 1, 2,...., n.

Output: The maximum revenue obtainable for rods whose lengths sum to n, computed as the sum of the prices for the individual rods.

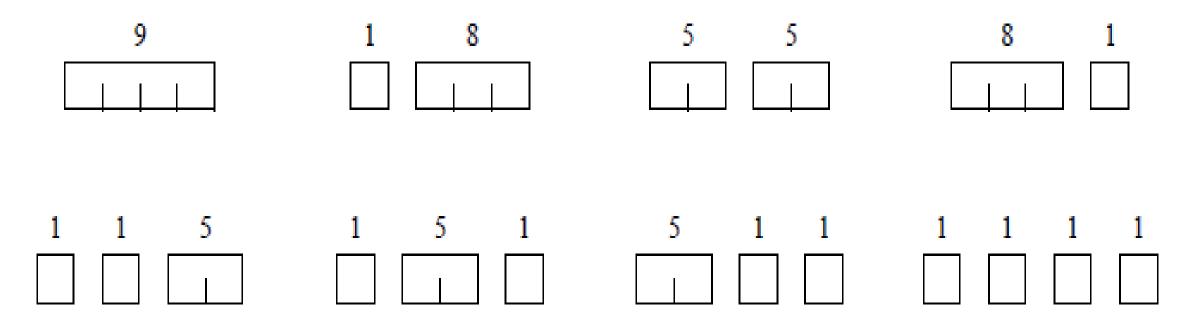
 If p_n is large enough, an optimal solution might require no cuts, i.e., just leave the rod as n inches long.

Example

length i	1	2	3	4	5	6	7	8
price p_i	1	5	8	9	10	17	17	20

Can cut up a rod in 2^{n-1} different ways, because can choose to cut or not cut after each of the first n - 1 inches.

Here are all 8 ways to cut a rod of length 4, with the costs from the example:



Example...

- The best way is to cut it into two 2-inch pieces, getting a revenue of $p_2 + p_2 = 5 + 5 = 10$.
- Let r_i be the maximum revenue for a rod of length i . Can express a solution as a sum of individual rod lengths.
- Can determine optimal revenues r_i for the example, by inspection:

i	r_i	optimal solution
1	1	1 (no cuts)
2	5	2 (no cuts)
3	8	3 (no cuts)
4	10	2 + 2
5	13	2 + 3
6	17	6 (no cuts)
7	18	1 + 6 or 2 + 2 + 3
8	22	2 + 6

Example...

- Can determine optimal revenue r_n by taking the maximum of
- P_n: the price we get by not making a cut,
- r₁+ r_{n-1}: the maximum revenue from a rod of 1 inch and a rod of n-1 inches,
- r_2 + r_{n-2} : the maximum revenue from a rod of 2 inches and a rod of n-2 inches, . . .
- r _{n-1}+ r₁.
- That is,

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

Optimal substructure

- To solve the original problem of size n, solve subproblems on smaller sizes. After making a cut, we have two subproblems. The optimal solution to the original problem incorporates optimal solutions to the subproblems. We may solve the subproblems independently.
- <u>Example</u>: For n = 7, one of the optimal solutions makes a cut at 3 inches, giving two subproblems, of lengths 3 and 4. We need to solve both of them optimally. The optimal solution for the problem of length 4, cutting into 2 pieces, each of length 2, is used in the optimal solution to the original problem with length 7.

- A simpler way to decompose the problem: Every optimal solution has a leftmost cut. In other words, there's some cut that gives a first piece of length i cut off the left end, and a remaining piece of length n -i on the right.
- Need to divide only the remainder, not the first piece.
- Leaves only one sub-problem to solve, rather than two subproblems.
- Say that the solution with no cuts has first piece size i = n with revenue p_n , and remainder size 0 with revenue $r_0 = 0$.
- Gives a simpler version of the equation for r_n:

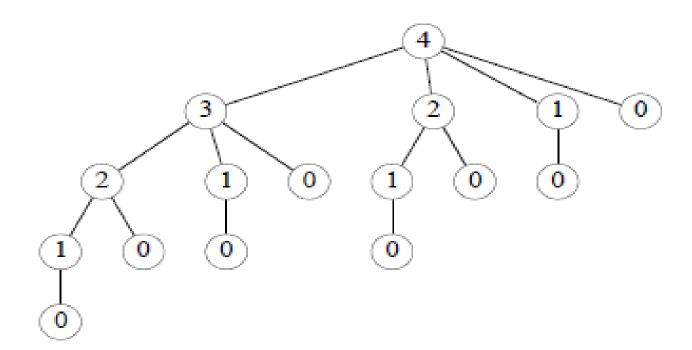
$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) \, .$$

1-Recursive top-down solution

```
CUT-ROD(p, n)
 if n == 0
      return 0
 q = -\infty
 for i = 1 to n
     q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))
 return q
```

This procedure works, but it is *inefficient*. If you code it up and run it, it could take more than an hour for n = 40. Running time almost doubles each time n increases by 1.

 Why so inefficient?: CUT-ROD calls itself repeatedly, even on subproblems it has already solved. Here's a tree of recursive calls for n = 4. Inside each node is the value of n for the call represented by the node:



Lots of repeated subproblems. Solve the sub-problem for size 2 twice, for size 1 four times, and for size 0 eight times.

2-Dynamic-programming solution

- Instead of solving the same subproblems repeatedly, arrange to solve each subproblem just once.
- Save the solution to a subproblem in a table, and refer back to the table whenever we revisit the subproblem.
- "Store, don't recompute" (time-memory trade-off.)
- Can turn an exponential-time solution into a polynomial-time solution.
- Two basic approaches:
 - top-down with memoization,
 - and bottom-up.

Top-down with memoization

- Solve recursively, but store each result in a table.
- To find the solution to a subproblem, first look in the table. If the answer is there, use it. Otherwise, compute the solution to the subproblem and then store the solution in the table for future use.
- *Memoizing* is remembering what we have computed previously.
- Memoized version of the recursive solution, storing the solution to the subproblem of length i in array entry r[i]:

```
MEMOIZED-CUT-ROD(p, n)
let r[0..n] be a new array
for i = 0 to n
r[i] = -\infty
return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

```
 \begin{array}{l} \text{MEMOIZED-CUT-ROD-AUX}(p,n,r) \\ \text{if } r[n] \geq 0 \\ \text{return } r[n] \\ \text{if } n == 0 \\ q = 0 \\ \text{else } q = -\infty \\ \text{for } i = 1 \text{ to } n \\ q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p,n-i,r)) \\ r[n] = q \\ \text{return } q \end{array}
```


 Sort the subproblems by size and solve the smaller ones first. That way, when solving a subproblem, have already solved the smaller subproblems we need.

```
BOTTOM-UP-CUT-ROD(p, n)

let r[0 ...n] be a new array

r[0] = 0

for j = 1 to n

q = -\infty

for i = 1 to j

q = \max(q, p[i] + r[j - i])

r[j] = q

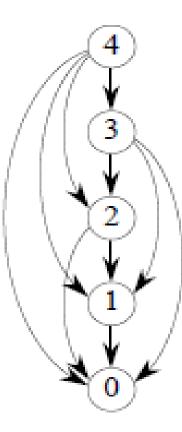
return r[n]
```

Running time

- Both the top-down and bottom-up versions run in $\Theta(n^2)$ time.
 - Bottom-up: Doubly nested loops. Number of iterations of inner for loop forms an arithmetic series.
 - Top-down: MEMOIZED-CUT-ROD solves each subproblem just once, and it solves subproblems for sizes 0,1,, n. To solve a subproblem of size n, the for loop iterates n times
 - over all recursive calls, total number of iterations forms an arithmetic series

Subproblem graphs

Example: For rod-cutting problem with n = 4:



Subproblem graphs...

- Subproblem graph can help determine running time. Because we solve each subproblem just once, running time is sum of times needed to solve each subproblem.
- Time to compute solution to a subproblem is typically linear in the outdegree (number of outgoing edges) of its vertex.
- Number of subproblems equals number of vertices.

When these conditions hold, running time is linear in number of vertices and edges.

Reconstructing a solution

- So far, have focused on computing the *value* of an optimal solution, rather than the *choices* that produced an optimal solution.
- Extend the bottom-up approach to record not just optimal values, but optimal choices. Save the optimal choices in a separate table. Then use a separate procedure to print the optimal choices.

Reconstructing a solution

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)let $r[0 \dots n]$ and $s[0 \dots n]$ be new arrays r[0] = 0for j = 1 to n $q = -\infty$ for i = 1 to jif q < p[i] + r[j - i]q = p[i] + r[j-i]s[j] = ir[j] = qreturn r and s

Reconstructing a solution

PRINT-CUT-ROD-SOLUTION (p, n) (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)while n > 0print s[n]n = n - s[n] Example

i 0 1 2 3 4 5 6 7 8 r[i] 0 1 5 8 10 13 17 18 22 s[i] 0 1 2 3 2 2 6 1 2

A call to PRINT-CUT-ROD-SOLUTION (p, 8) calls EXTENDED-BOTTOM-UP-CUT-ROD to compute the above r and s tables. Then it prints 2, sets n to 6, prints 6, and finishes (because n becomes 0).