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Dynamic Programming



Dynamic Programming

• Not a specific algorithm, but a technique (like divide-and-conquer).

• Developed back in the day when “programming” meant “tabular 
method” (like linear programming). Doesn’t really refer to computer 
programming.

• Used for optimization problems:

• Find a solution with the optimal value.

• Minimization or maximization.



Four-step method

• 1. Characterize the structure of an optimal solution.

• 2. Recursively define the value of an optimal solution.

• 3. Compute the value of an optimal solution, typically in a bottom-up 
fashion.

• 4. Construct an optimal solution from computed information.



Rod cutting

• How to cut steel rods into pieces in order to maximize the revenue 
you can get? Each cut is free. Rod lengths are always an integral n

Input: A length n and table of prices pi , for i = 1, 2,…… , n.

Output: The maximum revenue obtainable for rods whose lengths 
sum to n, computed as the sum of the prices for the individual rods.

• If pn is large enough, an optimal solution might require no cuts, i.e., 
just leave the rod as n inches long.



Example



Example…
• The best way is to cut it into two 2-inch pieces, getting a revenue of

p2 + p2 = 5 + 5 = 10.

• Let ri be the maximum revenue for a rod of length i . Can express a 
solution as a sum of individual rod lengths.

• Can determine optimal revenues ri for the example, by inspection:



Example…

• Can determine optimal revenue rn by taking the maximum of

• Pn: the price we get by not making a cut,

• r1+ rn-1: the maximum revenue from a rod of 1 inch and a rod of n-1 
inches,

• r2+ rn-2 : the maximum revenue from a rod of 2 inches and a rod of n-2 
inches, . . .

• r n-1+ r1.

• That is,



Optimal substructure

• To solve the original problem of size n, solve subproblems on smaller 
sizes. After making a cut, we have two subproblems. The optimal 
solution to the original problem incorporates optimal solutions to the 
subproblems. We may solve the subproblems independently.

• Example: For n = 7, one of the optimal solutions makes a cut at 3 
inches, giving two subproblems, of lengths 3 and 4. We need to solve 
both of them optimally. The optimal solution for the problem of 
length 4, cutting into 2 pieces, each of length 2, is used in the optimal 
solution to the original problem with length 7.



• A simpler way to decompose the problem: Every optimal solution has a 
leftmost cut. In other words, there’s some cut that gives a first piece of 
length i cut off the left end, and a remaining piece of length n -i on the 
right.

• Need to divide only the remainder, not the first piece.

• Leaves only one sub-problem to solve, rather than two subproblems.

• Say that the solution with no cuts has first piece size i = n with revenue 
pn, and remainder size 0 with revenue r0 = 0.

• Gives a simpler version of the equation for rn:



1-Recursive top-down solution

This procedure works, but it is inefficient. If you code it up and run it, it
could take more than an hour for n = 40. Running time almost doubles each 
time n increases by 1.



• Why so inefficient?: CUT-ROD calls itself repeatedly, even on 
subproblems it has already solved. Here’s a tree of recursive calls for 
n = 4. Inside each node is the value of n for the call represented by 
the node:

Lots of repeated subproblems. Solve the sub-problem for size 2 twice, for size 1 four 

times, and for size 0 eight times.



2-Dynamic-programming solution

• Instead of solving the same subproblems repeatedly, arrange to solve 
each subproblem just once.

• Save the solution to a subproblem in a table, and refer back to the 
table whenever we revisit the subproblem.

• “Store, don’t recompute” (time-memory trade-off.)

• Can turn an exponential-time solution into a polynomial-time 
solution.

• Two basic approaches:
• top-down with memoization, 
• and bottom-up.



Top-down with memoization

• Solve recursively, but store each result in a table.

• To find the solution to a subproblem, first look in the table. If the 
answer is there, use it. Otherwise, compute the solution to the 
subproblem and then store the solution in the table for future use.

• Memoizing is remembering what we have computed previously.

• Memoized version of the recursive solution, storing the solution to 
the subproblem of length i in array entry r[i]:





Bottom-up

• Sort the subproblems by size and solve the smaller ones first. That 
way, when solving a subproblem, have already solved the smaller 
subproblems we need.



Running time

• Both the top-down and bottom-up versions run in Ɵ( n2 ) time.

• Bottom-up: Doubly nested loops. Number of iterations of inner for 
loop forms an arithmetic series.

• Top-down: MEMOIZED-CUT-ROD solves each subproblem just 
once, and it solves subproblems for sizes 0,1, ……, n. To solve a 
subproblem of size n, the for loop iterates n times 

• over all recursive calls, total number of iterations forms an 
arithmetic series



Subproblem graphs



Subproblem graphs…
• Subproblem graph can help determine running time. Because we solve 

each subproblem just once, running time is sum of times needed to 
solve each subproblem.

• Time to compute solution to a subproblem is typically linear in the out-
degree (number of outgoing edges) of its vertex.

• Number of subproblems equals number of vertices.

When these conditions hold, running time is linear in number of vertices 
and edges.



Reconstructing a solution

• So far, have focused on computing the value of an optimal solution, 
rather than the choices that produced an optimal solution.

• Extend the bottom-up approach to record not just optimal values, but 
optimal choices. Save the optimal choices in a separate table. Then 
use a separate procedure to print the optimal choices.



Reconstructing a solution



Reconstructing a solution



Example


